If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+10t+7=0
a = 3; b = 10; c = +7;
Δ = b2-4ac
Δ = 102-4·3·7
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*3}=\frac{-14}{6} =-2+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*3}=\frac{-6}{6} =-1 $
| Bb−253=415 | | b−253=415 | | v-11/2=-8 | | n+7=2(n+3) | | 1,132=b-6,339 | | V28v=840 | | 1.132=b-6,339 | | 12x+24=80 | | l/5-6=-10 | | 3x^2=19-20 | | 12+2n=52 | | 2(x+5)+7=3(x+6) | | 10+.015y=y | | 2×-5=4x-2 | | (7x-3)+(6x+17)=180 | | 4t-15=-10 | | 7+8p=175 | | 4•y=36 | | 3x+12=20+6 | | 0.7=-2y+70 | | 5z-5(8+3z)=-8+12 | | 0/7=-2y+70 | | 5(w-2)=-2(15w+5) | | x^2-5+6.25=0 | | x^2-5.25=0 | | 5(-8+b)=-130 | | (7x-9)+(5x+9)=180 | | 8x+41=6 | | 3x-1/2-5x+4/3-x+2/8=2x-3/5-1/10 | | 3x-1*x=30 | | 3x-1/2-5x+4/3-x+2/8=2x-3/5-1/19 | | 32=a/2 |